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Received 12 December 1988 

Abstract. An exact expression for the quantum mechanical propagator for a particle moving 
on a group manifold is shown to arise from the application of an infinite-dimensional 
version of the Duistermaat-Heckman integration formula to a suitable path integral over 
the based loop group of the group. In an appendix the equivalence of this expression to 
a spectral representation of the propagator is demonstrated by means of a Poisson 
resummation. 

1. Introduction 

The quantum mechanics of a particle moving without external forces on a compact 
Lie group (quantum mechanics on a group for short) is an interesting model for testing 
approaches to quantisation in non-linear systems. It is a special case of the model of 
a quantum mechanical particle moving on a general Riemannian manifold, which has 
been studied both from the path integral point of view (Marinov 1980, Schulman 1981 
ch 24, Grosche and Steiner 1987) and from the canonical point of view (de Witt 1952, 
1957). The principle of preserving the symmetries of the classical system in the quantum 
Hamiltonian leads to an unambiguous canonical quantisation for the particle on a 
group manifold (Omote and Sat0 1972, Charap 1973). In the path integral approach 
to this case a long-established feature is the exactness of the semiclassical approximation 
for the propagator (Schulman 1968, Dowker 1970,1971, Marinov and Terentiev 1979). 

Semiclassical exactness in a rather different sense is the hallmark of the Duistermaat- 
Heckman ( D H )  integration formula (Duistermaat and Heckman 1982, 1983, Berline 
and Vergne 1983). This is an integration formula for certain integrals on finite- 
dimensional compact symplectic manifolds. The integrals are of the form 
Jexp(H)w"/n!  where H is a function and w is the sympletic form. The answer is 
given in terms of a sum over the critical points of H, and is identical to the answer 
which would be obtained by applying the 'semiclassical approximation' at each critical 
point (i.e. through evaluating the fluctuation determinant of H, whilst ignoring the fact 
that the critical point need not be a local maximum). In fact a better way of viewing 
the DH formula is in terms of localisation: the integrand can be shown to be exact 
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everywhere outside the critical points of H, so that by excising infinitesimally small 
balls centred around the critical points and using Stokes’ theorem, one sees that the 
answer can only depend on local data at the critical points of H. (For more information 
and examples of the DH formula see Picken (1988).) 

It has been suggested by Atiyah that a generalisation of the DH formula to infinite 
dimensions would be a desirable goal (Atiyah 1985). Such a generalisation seems to 
give correct results in certain circumstances (e.g. when applied to the loop space of a 
manifold the index theorem is obtained (Atiyah 1985, Bismut 1985)). There are strong 
links to the localisation arguments used in the ‘physicists proof’ of the index theorem 
(Alvarez-GaumC 1983, Friedan and Windey 1984, Getzler 1983) and in Witten’s 
derivation of the Morse inequalities and other results via supersymmetric sigma models 
(Witten 1982). Quantum mechanics on a group would seem to be another fruitful area 
for testing such an infinite-dimensional version of the DH formula, as the Hilbert space 
of the theory, which is essentially the space, RG, of based loops on G, has been studied 
in depth by Pressley and Segal (1987), who have, in particular, elucidated the 
geometrical features of R G  as an infinite-dimensional symplectic manifold. 

In this paper it is shown that the propagator for quantum mechanics on a group 
manifold is correctly reproduced as the result of applying an infinite-dimensional. 
version of the DH integration formula to a suitable path integral over RG.  In § 2 the 
model is presented and a spectral representation of the propagator is written down. 
This representation is equivalent to a sum-over-classical-paths representation (sum- 
over-functional-critical-points representation), as is shown in an appendix. In § 3 a 
path integral for the propagator is proposed and the necessary geometric features of 
R G  are introduced. By choosing a suitable measure and applying an infinite- 
dimensional version of the D H  formula the sum-over-classical-paths representation of 
the propagator is reproduced. In § 4 the conclusions are presented. 

2. The propagator for quantum mechanics on G 

The model we will be studying is the quantum mechanics of a point particle constrained 
to move on a group manifold, G, without external forces. The action governing the 
classical motion of the particle is 

where f :  [ t o ,  t,] + G gives the position of the particle as a function of time t. In terms 
of local coordinates x = {xi, i = 1, . . . , n = dim G} on the group manifold the action 
takes the form 

I = ‘  

Z[x] =+ [ ’ gl,(x)xlxJ d t  
J t = t o  

where -gj,( x) are the components of the (negative-definite) Cartan-Killing metric on 
G. Thus (2.2) is the constrained kinetic energy. The corresponding Hamiltonian 
function is 

where 
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Following de Witt (1952) the Hamiltonian ( 2 . 3 )  is quantised by the replacement pI + 

where $I = -ihD, and where D, is the covariant derivative with respect to the Christoffel 
connection of the metric g (see also the discussion in Charap (1973)). Thus the 
Hamiltonian operator is 

H = - i h 2 A  (2.5) 
where A is the Laplace-Beltrami operator on the group manifold: 

A = g"D,D,. (2.6) 

m o ,  g1; t l )  = k l l  exp(-it,H/h)lgo) (2.7) 

The propagator from an initial position go at t = O  to a final position g,  at t = t , :  

in terms of orthonormal eigenfunctions $,,(g) and eigenvalues E,, of H. The spectrum 
of H may be described as follows: for each irreducible representation V(A) of G, 
labelled by its highest weight A, there are d (  A )' independent eigenfunctions, where 
d(A) is the dimension of V(A), with eigenvalue -ih2c2(A),  where c2(A) is the eigenvalue 
of the second-order Casimir element, c 2 ,  in the representation V (  A ). The eigenfunctions 
are the d(A)'entries o f the  matrix d(A)'"D'(g) where D * ( g )  is the matrix representing 
g in the representation V(A). Thus 

W O ,  g,;  t l )  =c d(A) Tr [DA(g l )DA"(go) l  exp(-ihtIc2(A)/2) 
A 

where gl(go)- '  is conjugate to exp(icp), an element of the torus, T, of G. (As this does 
not determine cp uniquely we define cp to be the shortest element of it such that g,(go)-l 
is conjugate to exp(icp). Here and elsewhere we make the assumption that g,  and go 
are not equal, nor are they conjugate points in the geometric sense.) Furthermore x,, 
is the character of the representation V(A):  

xA(cp? = Tr(D"(e'")). (2.10) 
Thus without loss of generality we may set go = 1 and g, = exp(icp) and we do so 
henceforth. For further details of the derivation see Marinov and Terentiev (1979). 

For the present purpose it is preferable to work with a different representation of 
the propagator, namely as a sum over a certain lattice 7: f is contained in it, where 
t is the torus Lie algebra, and is generated over the integers by the coroots 
{&, = 2a, / (a1,  a , ) } ,  i = 1 , .  . . , 1 =rank G, where a,,  i = 1,. . . , I are the simple roots of 
G, identified with elements of it via the Cartan-Killing form ( , ). Any v E satisfies 
exp(2riv)  = 1 and there are no other elements of it with this property. Thus there is 
a one-to-one correspondence between f and the set of closed geodesics in the torus 
of unit parameter length, starting and ending at 1 ( v  corresponds to the geodesic 
t*exp(2~ iv t ) ,  t E  [0,1]). The propagator X,  regarded as a function K(cp, t,) of cp 
and t ,  , is expressed in this representation as 

K(cp, t , )  = c ( 2 ~ i h f , ) - " ' ~  exp(ihnt,/48) 

(2.11) 
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where n = dim G, R,  is the set of positive roots with respect to some chosen ordering 
of roots and c is a constant. Thus we recognise K (cp, t l )  as a 'sum over classical paths', 
as the action (2.1) may be rewritten 

(2.12) 

by rescaling the time. For the geodesic fp(  t )  = exp[it(cp + 2 n v ) ]  this gives 

Z [ f Y ]  = (cp + 2TV, cp + 2nv)/2 t' . (2.13) 

The expression (2.11) was obtained by Marinov and Terentiev (1979) using the 
semiclassical approximation and they subsequently showed that it is an exact expression 
for the propagator by the indirect method of demonstrating that it satisfies the 
Schrodinger equation. In the appendix we give a direct derivation of the equality of 
the 'sum-over-classical-paths' representation (2.11) and the form of the propagator 
from the spectral representation (2.9). The derivation uses a Poisson resummation and 
various results from Lie algebra structure theory and representation theory. A similar 
calculation for the groups SU( n )  was performed by Dowker (1971). 

3. The propagator on G as an exact path integral 

There is a slightly different way of viewing the classical actions (2.13). Starting with 
the time-rescaled action (2.12) one may utilise the fact that the manifold on which the 
particle moves is a group to factorise the pathf!t) (wheref(0) = 1 andf(1) = exp(icp)) 
into a closed loop g( t )  and a reference path fo( t ) :  

At) =fo(t)g(t) .  (3.1) 

Here the multiplication of paths is pointwise group multiplication of the image points 
and fo( t )  is the shortest geodesic connecting the endpoints 

f o ( t )  =exp(itcp). (3.2) 

In terms of g ( t )  the functional Z becomes 

Z[g] = -- - (g-'g + g-'icpg, g-'g + g-licpg) dt. (3.3) 
2 t l  'I' r=o  

The classical paths (i.e. stationary points) for Z[g] are now the closed geodesics 

gy( t )  = e x p ( 2 ~ i u t )  (3.4) 

Z[gu]=(cp+2TV, cp+2TV)/2t'. (3.5) 

and one has 

The advantage of the change of functional variable is that g is an element of OG, 
the space of based loops on G (i.e. loops starting and ending at 1 E G) and this space 
has some very special geometric features, which may be summarised by saying that 
OG is an infinite-dimensional flag manifold (see Pressley and Segal (1987) or Freed 
(1985); an expository account of finite-dimensional flag manifolds and the Duistermaat- 
Heckman integration formula is given in Picken (1988)). For the present purpose the 
key feature of OG is that it is a Kahler manifold and thus in particular it possesses a 
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symplectic form 0. Now on finite-dimensional symplectic manifolds the Duistermaat- 
Heckman (DH) integration formula (to be described below) asserts that a certain class 
of integrals, of the type exp(iH) dp,  localises to the critical points of the function 
H, i.e. the answer depends only on local data at the critical points of H. Our purpose 
is to show that with an appropriate choice of measure d p [ g ]  the integral 

belongs to the same class and reproduces the exact propagator K ( q ,  t , ) ,  under the 
assumption that the DH result extends to infinite dimensions. 

First we describe a version of the DH result for finite-dimensional symplectic 
manifolds. Let ( M ,  w )  be a compact symplectic manifold of dimension 2n and H be 
a smooth function (the Hamiltonian) on M. The corresponding Hamiltonian vector 
field, 6, is given by 

d H  + iEw = 0. (3.7) 

Assume furthermore that H has only isolated critical points {m,}iEl on M (this is the 
simplest case). Then the DH formula asserts 

r 

J e x p ( i H ) ( w / 2 ~ i ) " l n !  = exp(iH(m,))/Pf(J,(m,)). 
M , = I  

(3.8) 

On the right-hand-side Pf(J,(m,)) is a kind of winding number of the vector field 6 
around its zero at m,. Specifically Jc is a linear automorphism of Tm,M defined by 

J*( Y )  = -Tc( Y )  V Y E  TmtM (3.9) 

where 9, is the Lie derivative. Pf(JJm,)) is then the Pfaffian of the antisymmetric 

Following Atiyah and Bott (1984) we introduce local coordinates {xJ, y,}, j  = 1, .  . . , n 
around the point m,, which vanish at m,, in which H, w and 6 take the following form: 

map J,. 

n 

H = H (  m, + 1 Alp, ( x i  + y?)/2 + . . . (3.10) 
, = I  

w = pJ dxj A dy, +. . . (3.11) 
j = 1  

(3.12) 

where A,, pj are constants and the dots indicate terms with coefficients of higher 
polynomial order in the coordinates. On the subspace of Tm,M spanned by {dx,, a,,,}, 
J6 acts as the matrix (-?! if). Defining the Pfaffian of J, to be the product of the upper 
right-hand entries of these matrices, one has 

(3.13) 

However, using (3.10) and (3.11), one can give an alternative expression for Pf(J,), 
namely 

(3.14) 
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where the determinant of the Hessian of H is 

and the determinant of w at m, ,  l w l [ m , ) ,  is defined to be 

(3.15) 

(3.16) 

This alternative form for Pf(J,) turns out to be convenient for studqing the infinite- 
dimensional generalisation. 

Next we turn to the symplectic geometry of the space of based loops RG. One 
way of regarding R G  (Pressley and  Segal 1987, Freed 1985) is as a homogeneous 
space % / C (  .To) where 54 = U K LG (the semidirect product of the free loops on G, LG, 
by the circle action, U, which rotates the loops) and C (  To) is U x G where G stands 
for the constant loops. C (  Yo) is the centraliser of the subtorus 9,) = U  x 1 of the full 
torus .T = U x T of 9. I n  finite dimensions homogeneous spaces of the form G/  T or  
G / C (  To) are known as flag manifolds. Thus R G  is an  infinite-dimensional flag 
manifold. In finite dimensions flag manifolds possess left-G-invariant symplectic 
forms. The corresponding left-%invariant sympletic form, w ,  on R G  is described as 
follows (Pressley 1982). The tangent space to R G  at the identity, e, may be identified 
with Lg/g, where Lg is the Lie algebra of free loops on g and g are the constant loops. 
Thus X E T,RG corresponds to X = I,,+(, X,, exp(2rrint) with X ,  E g(. Then w e ,  regar- 
ded as a skew-bilinear form on T,RG, is given by 

(3.17) 

where we have chosen the normalisation to suit our later purposes. Through left-9- 
invariance, w is then determined on all of RG. 

The precise formulation of our result can now be stated. 
If [ a )  in the path integral (3.6) one chooses the measure to be 

ex p ( i h n t / 48 1 ( Svol ) ,[ w / 2 ~i ] d p [ g ] = Cc [ 2 ~i h r I ) -" (3.18) 

where C is a regularisation factor and where (Svol), is the infinite-dimensional 
symplectic volume (see below) 

and ( 6 )  one assumes that the DH formula may be applied on RG, 
then the path integral reproduces the exact propagator (2.1 1). 
In the above the symplectic volume is defined by analogy with the finite-dimensional 

case. Let 

(3.19) 

be the expression for w with respect to some basis of 1-forms { e L r } ,  where the range 
of a, p is left unspecified (finite or  infinite). Then in finite dimensions, d = 2n, one 
may write the symplectic volume as 

2 n  

( S V O ~ ) ~ [ W ]  = w " / n !  = 1wI A e" 
o = l  

(3.20) 
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where AV=, e a  is the ordered wedge product with respect to some ordering of the 
basis, and the same ordering is applied in the calculation of /wI  = det[wUp]. By extension 
one defines the infinite-dimensional symplectic volume to be 

I' 

(Svol),[w] = Iw /  A ea. 
, = I  

(3.21) 

Following assumption ( b )  we now proceed to calculate the right-hand side of the 
DH formula (3.8) for the path integral (3.6) with measure (3.18). As above one identifies 
T,nG with L g / g .  In fact X E L g / g  may be identified with a left-invariant vector field 
2 on nG. In the usual way these vector fields are dual to left-invariant 1-forms g-'Sg 
via 

(g- '6g) (2g)  = x. (3.22) 

The first variation of I and the second variation of I when the first variation vanishes 
are 

6'I[g] = ( - l / t , )  

(3.23) 

(3.24) 

so that at the geodesic g = g ,  (3.4) 

In  order to proceed it is convenient to define a basis for L g / g .  Let 

g c = 5 +  2 gU 
a c R  

(3.26) 

be the root space decomposition of g c  and let {H, } ,  i = 1, . . . , 1 be a basis for the Cartan 
subalgebra b = t,, and E, be a basis element for the root space gu.  It is always possible 
to choose these bases such that 

H : = - H ,  i =  1, .  . . , I  

(3.27) 

= O  otherwise. 

Now define the following basis elements of L g g :  

V; = (1 /v '? )~ , [exp(2r inr )+  exp(-2.rrint)] j = l ,  . . . ,  l ; n > O  

W: = ( l / & ) i ~ , [ e x p ( 2 r i n t )  -exp(-2rint)]  j =  1 , .  . . , I ;  n > O  
V: = ( I / & ) ( E ,  exp(2.rrint) - E- ,  exp(-2rinr))  a E R,;  n # o 
W :  = ( 1 / 4 ) ( i E ,  e x p ( 2 r i n t ) i  iE-cr expt-2.rrint)) a E R,; n z 0. 

(3.28) 
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By inserting this set in (3.25) one finds that it diagonalises the Hessian of I at g,. The 
eigenvalues of the Hessian (corresponding to the coefficients Alpl in (3.10)) are given 
by: 

Basis element Eigenvalue of Hess(l[g,]) 

Next one obtains the components of the symplectic form w at g, using the same basis 
elements. From the expression (3.17) for the components of w at e and from left- 
invariance one has 

up,( Pi ,  CIr;) = w e (  P;, @Ir;) 

= ( - l / h t l )  ( V ; ,  WT)dt  1,:" 
= (2rrn/ht1)6""S,, (3.29) 

where the indices K ,  L stand for j or a. Now with the aid of the regularisation factor 

(3.30) 

(3.31) 

(using a standard infinite product formula in the last equality). Combining this result 
with the expression for the measure (3.18), the D H  formula yields 

1 xexp(i(cp + 2 w ,  cp +2xv)/2ht l )  (3.32) 

in agreement with (2.11). 
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4. Conclusions 

The result just shown is an  encouraging piece of evidence that the D H  formula does 
indeed extend to infinite dimensions in suitable circumstances. However, there remain 
several questions to be answered. Firstly, one would like to have a better understanding 
of the factors multiplying the symplectic volume in the expression (3.18) for the path 
integral measure. The regularisation factor C might be tolerated as it seems to be a 
necessary concomitant of working in infinite dimensions (cf Atiyah 1985), but the 
time-dependent factors had to be put in by hand. Secondly, a proof is still lacking, 
although one may be able to learn something from studying the DH formula on the 
finite-dimensional analogues of nG, i.e. on flag manifolds (Picken 1988). As a final 
remark it should be emphasised that this result might point the way to a new global 
approach to path integration which could avoid the ambiguities of the time-slicing 
definition of the path integral whilst retaining the spirit of Feynman's original idea. 
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Appendix 

We start with a discussion of the weight lattice f and its dual, the coweight lattice f 
Weights, being elements of t,*, the dual of t,, which is the complexification of the torus 
Lie algebra t, may be identified with elements o f t ,  itself via the Cartan-Killing form. 
Thus a weight A is identified with an element of t,, also denoted A,  via 

The weights form a lattice ? generated over the integers by the basic weights {A,}, 
i = 1 , .  . . , 1 =  rank G. The lattice ? is contained in it c t,. The Cartan-Killing form, 
which is negative definite on t is positive definite on it. Dual to f in it is the coweight 
lattice f' generated over the integers by the coroots {6! = 2a , / (a , ,  a,?}, i = 1, . . . , 1, 
where {a,} ,  i = 1 , .  . . , 1, are the simple roots. The duality is expressed by 

(A!,  6,) = 6,. (A21 

exp(2rri&,) = 1 (A3) 

A ( h ) = ( A ,  h? V h  E t,. ( A I )  

The coroots 6, possess the property 

and are the only elements oft, with this property. Thus there is a one-to-one correspon- 
dence between f' and the group of homomorphisms from U, the circle group, to T. 
This group is generated by the homomorphisms { T ~ , } ,  J = 1, . . . , 1 defined by 

Vm,(e") = exp(i66,) (A41 
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where 8 E [ 0 , 2 r )  parametrises U. Geometrically these homomorphisms are geodesics 
in T. 

Furthermore we will be needing the 1 x 1 matrices D, D' defined by 

Let the two bases in i t  be related by 

A I  = M,&, (A7) 

6, = M;'A,. (A8) 

Then, by taking the Cartan-Killing bracket of (A7) with CYkr respectively of (A8) with 
A K ,  we establish D =  M - I ,  D'= M and thus 

D' = D-' .  (A9) 

The expression for the propagator K (9, f )  as a 'sum over classical paths' is 

K(cp, t )  = c(2rihr)-""  exp(iAnt/48) 

I xexp(i(cp+2rv, cp+27rv)/2ht,) 

where c is a constant, n =dim G and R ,  is the set of positive roots with respect to 
some ordering. The elliptic function J ( c p ) ,  for cp E it, is defined by 

which may be rewritten as 

Here W is the Weyl group (the discrete group of linear transformations of it generated 
by reflections in the hyperplanes perpendicular to the simple roots), ( - l )Iw1 is the 
determinant of the Weyl group element w, and p is the special weight: 

I 

p = i  1 a = c A ,  ('413) 
a a R ,  , = I  

familiar in representation theory. As p E f, (A12) implies 

J(p+27rv) = J ( c p )  ('414) 

and hence we may take a factor (i)'/J(cp) (where p=number  of positive roots= 
( n  - 1)/2) out of the square brackets in (A10): 

K ( p ,  t )  = c ( 2 ~ i h t ) - " ' ~  e~p( ihnt /48) ( i )~J(cp)  
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The remaining term in square brackets is of the form 

g ( 2 n v )  
vi i 

where 

g(.x)=f(cp+.x) 

and 

Expanding x as x = x , a ' ,  and regarding g as a function of the components {x,}, the 
Poisson resummation formula 

may be applied. Here the Fourier transform &? is defined by 

&?(kl I .  . . , k , )  = jx . . .  j' g ( x , ,  . . . , xl) exp(-ik,x,) dx ,  . . . dx,. ('420) 
- X  --x 

Now from (A17) one has 

The Fourier transform o f f  is found to be 

i A22 

Here ( a ) ,  are the components of the root a with respect to the basis {A,} .  
Digressing briefly to derive this last formula one has, from (A18) and (A20), 

where 

(A23 

It is a remarkable feature of the situation at hand that the formula (A22) is the only 
contribution from the multiple derivatives in (A23). In general one would expect extra 
terms from derivatives hitting polynomial factors in the k,  pulled down by previous 
derivatives. These extra terms may be shown to vanish by the following argument (cf 
Marinov and  Terentiev 1979). The covariant Laplacian, A, when restricted to functions 
on the torus only, takes the form: 

A f =  J - ' ( o - ' ) , , d , , a , ) ( J f )  + ( P ,  P l f  ('425) 
where cp = cplal. The constant term ( p ,  p)f in (A25) ensures that A1 = 0, as may be 
checked by inserting the expression (A12) for J in (A25) and using (wp, w p ) =  
(p,  p )  V w  E W. On the other hand, inserting instead the expression ( A l l )  for J,  A1 = 0 
leads to the identity 

C ( P ,  Y) COS((P - Y, ( ~ ) / 2 )  fl sin((a, (A261 
P + Y E R +  ( a t R *  

. # A Y  
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Then scaling cp by a real factor s, multiplying (A26) by sP-2  and letting s+O, one 
deduces an identity for any cp E i t  

From (A27) one may derive further identities by applying the operator Di1av,dv,, the 
next one being 

Now the extra terms which might arise from the derivatives in (A23) all vanish due 
to the identities (A27), (A28), etc. 

Returning to the main discussion, (A15)-(A22) may be combined to give 

where A = k,A, with k, E Z is a general element of the weight lattice ?. 
Because of the factor I I a e R +  ( a ,  A )  certain weights are excluded from the summAation 

in (A29), namely those weights of the form wA where w E W, A E eo, but A E CO+ p. 
Here eo denotes the intersection of the weight lattice f and the positive Weyl chamber 
Co. That this is so may be seen by firstly supposing ( a ,  A )  = 0 for some a E R+. Then 
( w a ,  w A )  = 0 for any w E W and either w a  or - w a  is positive. As any A can be brought 
into eo by a Weyl transformation it remains to show that the factor (A30) vanishes 
for A E eo, A ,E? eo+ p. Letting A = k,A, with not all k, > 0 we suppose kJ = 0. Then from 
(A2) (aJ, A )  = 0 and the assertion is proved. This may then be used to resum the 
expression in square brackets in (A29), yielding 

Each A E eo may be regarded as the highest weight of an irreducible representation 
V(A) of G. Thus one may invoke various results from representation theory. In 
particular one has the Weyl character formula for V(A): 

X h ( ( P )  = (1/J(cp)) c (-W exp(i(w(A + P ) ,  9)) ('431) 
W E  w 

the Weyl dimension formula for d(  A ) = dim V (  A ): 
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and the formula for the eigenvalue c,(A) of the second-order Casimir element c 2 =  
-gvX ,X ,  (where [ g v ]  = [g , , ] - ' ,  g ,  = - ( X , ,  X,) and {Xt}, i = 1,. . . , n is a basis of g) in 
the representation V(A): 

('433) c2( A ) = ( A  + P, A + P )  - ( P ,  P i .  

Combining (A30)-(A33) with the observation 

n ( a ,  w A ) =  n ( ~ - ' a , A ) = ( - l ) ' ~ '  n (.,A) (A341 

the value of the constant c given by Marinov and Terentiev (1979) (in their notation 
c = C i ' /  N , )  

a € R +  O € R +  a € R +  

\ - I  

c = ( 2 ~ ) ~ + ' ( d e t  D)'I2(  n+ ( a ,  p ) )  
a € R  

and the Freudenthal-de Vries 'strange formula' 

(P, P )  = n/24 

~ ( 9 ,  t > =  C- ~ ( A ) x ~ ( ( P )  exp(-ihtc,(A)/2) 

one finally arrives at 

h € C o  

which is the form of the propagator derived from the spectral representation. 

(A37) 
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